ANACONDA Plus

Таблицы дожития

Введение

Важная область применения данных о возрастной структуре смертности заключается в составлении таблиц дожития. Таблица дожития (смертности) выражает вероятность смерти человека в каждом возрасте или промежутке времени. Таблицы дожития наиболее часто используются для анализа смертности в человеческих популяциях. На основании таблицы смертности можно рассчитать итоговые показатели смертности, в частности ожидаемую продолжительность жизни. Кроме того, их используют для анализа, в том числе статистики браков (напр., вероятности развода или расставания по годам брака) или образования.

Прежде чем мы перейдем к подробному анализу таблиц смертности, стоит указать различие между когортным и периодическим анализом. Обычно коэффициенты смертности не изучают путем наблюдения за отдельной группой или когортой людей в течение длительного времени, так как в большой популяции это сопряжено с чрезмерными логистическими сложностями (за исключением детской смертности, для которой имеются данные, либо когортных исследований). Вместо этого коэффициенты обычно рассчитывают на периодической основе, т. е. для определенных промежутков времени.

Теперь рассмотрим когортный и периодический анализ более подробно.

Когортный анализ (коэффициентов типа q) представляет собой анализ популяции:

- за счет наблюдения за когортой в течение длительного времени,
- напр., возрастной когортой (напр., родившиеся в 1990 г.), брачной когортой.

Периодический анализ (коэффициентов типа m) представляет собой анализ популяции:

- в течение определенного периода времени (напр., в 2010 г. или в 2010—2014 гг.) или
- на определенный момент времени (напр., перепись населения 2010 г.).

Диаграмма Лексиса на рис. 1 иллюстрирует разницу между периодическим и когортным анализом. По горизонтальной оси откладывается время в календарных годах, показанное в виде фиксированных интервалов. По вертикальной оси откладывается возраст в годах, показанный в виде фиксированных интервалов.

Рисунок 1. диаграмма Лексиса для когорты, рожденной в 2000 г., возраст 10—14 лет, 2010—2014 гг.

Когортная таблица дожития

В когортной таблице дожития указывается смертность когорты от рождения ее первого члена до смерти ее последнего члена. Однако как описано выше, использование когорты требует наличия данных за очень длительный период времени.

Периодическая таблица дожития

Можно объединить коэффициенты смертности для различных возрастных групп (или повозрастные коэффициенты смертности) за определенный период времени для составления таблицы дожития для «гипотетической» или «синтетической» когорты. Она называется периодической таблицей дожития, так как она строится на основании смертности, наблюдаемой за определенный период времени (напр., календарный год). Периодическая таблица дожития показывает, «...что произойдет с когортой, если в течение всей ее жизни будут действовать условия смертности, характерные для данного периода». Таким образом, она является удобным и ценным способом анализа смертности в популяции¹.

Сокращенные таблицы дожития

Таблицы дожития можно строить с шагом в один год или в «сокращенном» виде (т. е. для возрастных групп). Несмотря на то, что таблица дожития, построенная с шагом в год, дает весьма подробные сведения, сокращенные таблицы дожития могут упростить интерпретацию. В сокращенных таблицах используются коэффициенты смертности, рассчитанные для диапазонов возрастов, и делается предположение о том, что для близких возрастов близки и

¹ Preston, S., Heuveline, P. & Guillot, M., (2001), Demography: Measuring and Modeling Population Processes, Blackwell Publishing, Oxford, p. 42.

коэффициенты смертности. Наиболее распространенные возрастные группы — это возраста до 1 года, 1—4 года, 5—9 лет, а затем — пятилетние возрастные группы до 85 лет и старше или до 100 лет и старше.

Данная таблица дожития содержится в документе Excel Life table example.xlsx.

Столбцы таблицы дожития

В таблице 1 показан пример сокращенной таблицы дожития. Столбцы сокращенной таблицы дожития, а также символы, применяемые в заголовках каждого столбца, описаны ниже. Столбцы делятся на те, которые требуют ввода данных для страны (количество смертей и популяция на середину года), и те, где значения рассчитываются. Обратите внимание: префикс n обозначает диапазон возрастной группы, а суффикс х — начальный возраст группы.

Столбцы, в которые вводятся данные

$_{n}D_{x}$

 $_{n}D_{x}$ — фактическое количество смертей в каждой возрастной группе за указанный период.

$_{n}N_{x}$

 $_{n}N_{x}$ — фактическая численность популяции на середину года или периода в каждой возрастной группе.

Расчетные столбцы

$_{n}m_{x}$

 $_{n}m_{x}$ — повозрастные коэффициенты смертности за период.

$$_{n}m_{_{x}}=\frac{\mathsf{С}\mathsf{мерти}}{\mathsf{насе}\mathsf{ление}}$$
 в возрасте x на середину года или периода

В нашем примере для возрастной группы 30—34 года $_{n}m_{x}$ составляет:

$$_{5}m_{30} = \frac{1,479}{590.358} = 0.0025$$

$_{n}\mathbf{q}_{x}$

 $_{n}q_{x}$ — вероятность смерти в возрасте в точности от x до x+n. Представляет собой когортный параметр (т. е. параметр типа q, упомянутый выше). Это важнейший показатель таблицы дожития.

В периодической таблице дожития $_{n}q_{x}$ нельзя рассчитать непосредственно, поэтому его приходится аппроксимировать исходя из нашего значения $_{n}m_{x}$ $_{n}q_{x}$ по следующей формуле:

$$_{n}q_{x} \approx \frac{_{n}m_{x}*n}{1+(1-_{n}a_{x})*_{n}m_{x}*n}$$

где $_{n}a_{x}$ обозначает среднюю долю возрастного интервала, проживаемую теми, кто умирает. Если предполагается, что смерти в возрастном интервале распределены равномерно, то $_{n}a_{x}$ равен 0,5.

Предположение о равномерном распределении случаев смерти в возрастном интервале обычно является точным для всех возрастов, кроме самых малых, где оно смещено к первым месяцам первого года жизни.

 $_{1}\pmb{a}_{0}$ определяется по следующему уравнению:

$$_{_{1}}a_{_{0}}=1-\frac{\frac{_{1}m_{_{0}}}{_{1}q_{_{0}}}-1}{_{_{1}m_{_{0}}}}$$

Таблица 3.1. Пример таблицы дожития

										Человеко-		
					Поло				Число	лет жизни	Продотовини	0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	Лет в			Коэфф.	Доля	Popostuosti	Popostuosti	Число	умерших	на	Предстоящих	Ожидаемая
Возраст	лет в периоде	Смерти	Население	коэфф. смертности	прожитого	Вероятность	Вероятность выживания	число выживших	на интервале	интервале х	человеко-лет жизни	продолжительность
					периода	смерти		,	·	_		жизни в возрасте х
Х	n	_n D _x	_n N _x	_n m _x	_n a _x	" q _x	_n p _x	I _X	_n d _x	_n L _x	<i>T_x</i>	<i>e_x</i>
0	1	1801	127160	0,0142	0,1	0,0140	0,9860	100000	1398	98741	6893603	68,94
1–4	4	563	400018	0,0014	0,4	0,0056	0,9944	98602	553	393078	6794862	68,91
5–9	5	422	530488	0,0008	0,5	0,0040	0,9960	98048	389	489268	6401784	65,29
10–14	5	267	649495	0,0004	0,5	0,0021	0,9979	97659	201	487794	5912515	60,54
15–19	5	863	715482	0,0012	0,5	0,0060	0,9940	97459	586	485828	5424721	55,66
20–24	5	1262	685851	0,0018	0,5	0,0092	0,9908	96873	887	482145	4938894	50,98
25–29	5	1334	613755	0,0022	0,5	0,0108	0,9892	95985	1037	477333	4456749	46,43
30–34	5	1479	590358	0,0025	0,5	0,0124	0,9876	94948	1182	471785	3979416	41,91
35–39	5	1888	597361	0,0032	0,5	0,0157	0,9843	93766	1470	465154	3507631	37,41
40–44	5	2373	530890	0,0045	0,5	0,0221	0,9779	92296	2040	456379	3042477	32,96
45–49	5	3701	429071	0,0086	0,5	0,0422	0,9578	90256	3810	441753	2586098	28,65
50-54	5	3522	332871	0,0106	0,5	0,0515	0,9485	86445	4455	421089	2144345	24,81
55–59	5	2596	188952	0,0137	0,5	0,0664	0,9336	81990	5445	396337	1723256	21,02
60–64	5	2503	114956	0,0218	0,5	0,1032	0,8968	76545	7903	362966	1326919	17,34
65–69	5	3321	97190	0,0342	0,5	0,1574	0,8426	68642	10805	316197	963953	14,04
70–74	5	3854	88198	0,0437	0,5	0,1970	0,8030	57837	11392	260706	647755	11,20
75–79	5	5222	66048	0,0791	0,5	0,3301	0,6699	46445	15330	193900	387049	8,33
80–84	5	3901	29988	0,1301	0,5	0,4908	0,5092	31115	15271	117395	193150	6,21
85+		4000	19126	0,2091	0,5	1	0,0000	15843	15843	75755	75755	4,78

Для возрастов младше 5 лет $_{n}a_{x}$ составляет меньше 0,5, так как в этих возрастных группах смерть в основном наступает раньше. В развивающихся странах $_{n}a_{x}$ обычно составляет 0,3 для $_{1}q_{0}$ и 0,4 для $_{4}q_{1}$. Таким образом, значение для $_{1}q_{0}$ показывает, что младенцы, умирающие в возрасте до 1 года, живут в среднем 0,3 года. В развитых странах $_{n}a_{x}$ для $_{1}q_{0}$, как правило, составляет 0,1, так как более высокая доля смертей обусловлена неонатальными причинами, которые случаются в первый месяц жизни.

В нашем примере для возрастной группы 30—34 года:

$$_{5}q_{30} = \frac{0.0025*5}{1+(1-0.5)*0.0025*5} = 0.0124$$

Таким образом, согласно нашей таблице дожития, вероятность смерти между 30-м и 35-м днем рождения составляет 0,0124 (или 12,4 на 1000).

Последняя возрастная группа (q_{x+}) часто не имеет верхней границы. Она может быть 75+, 85+, 100+ и т. д., в зависимости от самой старшей возрастной группы в популяции. Так как все дожившие до начала последнего возрастного интервала в конце концов должны умереть, то q_{x+} всегда равняется 1.

$_{n}p_{x}$

 $_{n}p_{x}$ — вероятность выживания в возрасте в точности от x до x+n. Связана с $_{n}q_{x}$.

$$p_x = 1 - q_x$$

$$p_x + q_x = 1$$

В нашем примере для возрастной группы 30—34 года:

$$_{5}p_{30} = 1 - 0.0124 = 0.9876$$

Таким образом, согласно нашей таблице смертности, вероятность дожить до 35 лет у человека, дожившего до 30 лет, составляет 0,9876 (или 987,6 на 1000).

I_{x}

 I_x — важнейший показатель таблицы дожития. Это количество людей, доживших в точности до x лет. Относится к моменту достижения данного возраста, не к возрастному интервалу.

Первое значение, l_0 , представляет собой произвольное число, называемое **основанием** (обычно круглое число — например, 1, 1000 или 100 тыс.).

 I_x — гипотетическое количество выживших из когорты гипотетических новорожденных исходя из предположения о том, что для этих воображаемых новорожденных действуют те же повозрастные коэффициенты смертности, что и для рассматриваемой популяции. I_x не имеет отношения к фактическому количеству людей в возрасте от x до x + n в реальной популяции. Значение I_x имеет смысл только в отношении к исходному основанию.

Для расчета I_x сначала выберите основание, а затем двигайтесь вниз по таблице, заполняя ее по следующей формуле:

$$l_{x} = l_{x-n} *_{n} p_{x-n}$$

т. е. I_x предыдущей (на одну ступень младше) возрастной группы умножается на вероятность выживания для предыдущей возрастной группы, $_np_x$.

В нашем примере:

$$l_{30} = l_{25} *_{5} p_{25} = 95,985 * 0.9892 = 94,948$$

 I_x также можно использовать для расчета ${}_np_x$ и ${}_nq_x$.

$${}_{n} p_{x} = \frac{l_{x+n}}{l_{x}}$$

$${}_{n} q_{x} = \frac{l_{x} - l_{x+n}}{l_{x}}$$

$_n$ **d**_x

 $_{n}d_{x}$ — количество людей (из исходной группы), умерших в возрасте в точности от x до x+n. Рассчитывается как разность между I_{x} в начале данной и на ступень более старшей возрастной группы.

$$_{n}d_{x} = l_{x} - l_{x+n}
 = l_{x} *_{n} q_{x}$$

В нашем примере:

$$_{5}d_{30} = 94,948*0.0124 = 1,182$$

Для последнего интервала (без верхней границы) количество умерших людей равно количеству людей, доживших до его начала:

$$d_{x+} = l_{x+}$$

$_{n}L_{x}$

 $_{n}L_{x}$ — общее количество человеко-лет, прожитых в возрасте в точности от x до x+n.

Вклад в $_{n}L_{x}$ вносят и выжившие, и умершие. В нашем примере человек, переживший указанный временной интервал, вносит вклад, равный п годам жизни (п — продолжительность интервала в сокращенной таблице дожития). Каждый человек, умирающий в течение этого интервала, вносит вклад, равный доле интервала ($_{n}a_{x}$), умноженной на п лет.

В возрасте от 5 лет $_{n}L_{x}$ получают усреднением I_{x} и I_{x+n} и умножением на ширину интервала, n.

В нашем примере:

$$_{5}L_{30} = \frac{(94,948+93,766)*5}{2} = 471,785$$

Для L_0 , и $_4L_1$, так как $_na_x$ в этих возрастных группах не равен 0,5, он рассчитывается по следующей формуле:

$$_{n}L_{x}=n*\left(l_{x+n}+_{n}a_{x}*_{n}d_{x}\right)$$

 L_{x+} рассчитывается исходя из предположения о средней продолжительности жизни людей, доживших до начала данного возрастного интервала.

Следующая формула показывает соотношение между ${}_{n}L_{x}$, ${}_{n}d_{x}$ и ${}_{n}m_{x}$.

 $_{n}$ т $_{x}$, теперь равняется:

$$_{_{n}}m_{_{X}}=rac{_{_{n}}d_{_{X}}}{_{_{n}}L_{_{X}}}=rac{$$
Смерти согласно таблице дожития в интервале от x до x + n Человеко-лет, прожитых в интервале от x до x + n

$$\therefore_n L_x = \frac{{}_n d_x}{{}_n m_x} = \frac{l_x * q_x}{{}_n m_x}$$

$$\therefore L_{85+} = \frac{d_{85+}}{m_{85+}} = \frac{l_{85}}{m_{85+}}$$

где
$$d_{85+} = l_{85}$$
 ,

поскольку все умирают.

В нашем примере:

$$L_{85+} = \frac{15,843}{0.2091} = 75,755$$

 T_x — общее количество человеко-лет, прожитых после возраста x лет. Рассчитывается путем суммирования значений функции $_nL_x$ снизу (высший возрастной диапазон) вверх. Как и I_x , T_x относится к моменту достижения данного возраста, не к возрастному интервалу.

Для любого возраста x

$$T_{x} = T_{x+n} + {}_{n}L_{x}$$

For
$$x = 80$$
:

$$T_{80} = T_{85} + {}_{5}L_{80}$$

Для последнего возраста x

$$T_{r} = L_{r+}$$

$$T_{85} = L_{85+}$$

В нашем примере:

$$T_{30} = T_{35} +_5 L_{30} = 3,507,631 + 471,785 = 3,979,416$$

 e_{x} – ожидаемая продолжительность жизни.

В целом, важнейшим параметром из таблицы дожития является **ожидаемая продолжительность жизни**. Это ожидаемое среднее количество оставшихся лет жизни для человека в возрасте *х* исходя из коэффициентов смертности для рассматриваемого периода.

Для людей, доживших до возраста x (т. е. I_x), общее количество оставшихся лет жизни задается T_x . В среднем, каждому из этих I_x людей осталось жить T_x/I_x лет.

$$e_x = \frac{T_x}{l_x}$$

В нашем примере:

$$e_{30} = \frac{3,979,416}{94,948} = 41.91$$

Согласно этой таблице дожития, человек в возрасте ровно 30 лет может ожидать прожить в среднем еще 41,91 года (т. е. до возраста 71,91 года) при условии, что действующие для него коэффициенты смертности соответствуют указанным в таблице.

 e_o — среднее количество лет жизни новорожденного. Оно, как правило, называется ожидаемой продолжительностью жизни при рождении и задается следующим частным:

$$e_0 = \frac{T_0}{l_0}$$

Смертность детей младше 5 лет ($_5q_0$)

Теперь, после рассмотрения каждого компонента таблицы дожития, можно приступить к расчету коэффициента смертности детей младше 5 лет.

Помните, что:

$$_{n}q_{x}=\frac{l_{x}-l_{x+n}}{l_{x}}$$

$$_{5}q_{0}=\frac{l_{0}-l_{5}}{l_{0}}$$

В нашем примере:

$$_{5}q_{0}=rac{100,000-98,048}{100,000}=0.01952$$
 или 19,52 на 1000 живорождений.

Обратите внимание: $_5q_0$ рассчитывается после расчета $_1q_0$ и $_4q_1$ по формуле, учитывающей прожитую долю периода $_na_x$.

Коэффициент смертности среди взрослых (45 q15)

Смертность среди взрослых определяет вероятность смерти в возрасте от 15 до 60 лет в пересчете на 1000 человек населения:

$$_{45}q_{15} = \frac{l_{15} - l_{60}}{l_{15}}$$

Таким образом, коэффициент смертности среди взрослых рассчитывается путем составления синтетической когорты для соответствующего периода (т. е. таблицы дожития) с использованием повозрастных коэффициентов смертности за данный период.

В нашем примере:

$$_{45}q_{15}=rac{97,459-76,545}{97,459}=0.2146$$
 или 214,6 на 1000 человек населения.